Low Power, Rail-to-Rail Operational Amplifier

The NCV952 is a dual, low power, CMOS operational amplifier fully specified for 3 V and 5 V operation. Rail–to–rail output performance over the supply range of 2.7 V to 12 V provides increased dynamic range in single–supply and split–supply applications. This device offers a gain–bandwidth of 3.5 MHz and a slew rate of 1 V/ μ s, with only 0.7 mA of quiescent current. The NCV952 is available in a space saving 8–pin TSSOP8 package.

Features

- Rail-to-rail Input Common Mode Voltage Range
- Rail-to-rail Output Swing
- Wide Supply Range: 2.7 V to 12 V
- Excellent Gain-bandwidth and Speed: 3.5 MHz at 1 V/μs with 3 V Supply
- Low Quiescent Current: 0.7 mA at $V_S = 3$ V per Channel
- PSRR: 105 dB Typical
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

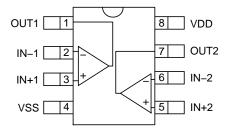
- General Purpose Operational Amplifier
- Active Filters
- Signal Conditioning Amplifiers/ADC Buffers
- Set-top Boxes
- Laptop/Notebook Computers
- Transformer/Line Drivers
- Personal Entertainment Systems
- Cell Phones and Other Portable Communications
- Portable Headphone Speaker Drivers
- Instrumentation and Sensoring

ON Semiconductor®

http://onsemi.com

TSSOP-8 CASE 948S

MARKING DIAGRAM



V52 = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV952DTBR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. PIN DESCRIPTION

Pin	Name	Туре	Description
1	OUT1	Output	Output of opamp 1
2	IN-1	Input	Inverting input of opamp 1
3	IN+1	Input	Non-inverting input of opamp 1
4	VSS	Power	Negative supply. A bypass capacitor of 0.1 μF to ground is recommended as close as possible to this pin.
5	IN+2	Input	Non-inverting input of opamp 2
6	IN-2	Input	Inverting input of opamp 2
7	OUT2	Output	Output of opamp 2
8	VDD	Power	Positive supply. A bypass capacitor of 0.1 μF to ground is recommended as close as possible to this pin.

Table 2. ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature, unless otherwise stated)

Parameter	Symbol	Limit	Unit
Supply Voltage (V _{DD} - V _{SS})	Vs	14	V
INPUT AND OUTPUT PINS			
Input Voltage	V _{IN}	V _{SS} – 0.3 to V _{DD} + 0.3	V
Differential Input Voltage (Note 1)	V _{ID}	±1	V
TEMPERATURE			
Storage Temperature	T _{STG}	-65 to +150	°C
Junction Temperature	T _J	+150	°C
ESD RATINGS (Note 2)			
Human Body Model	HBM	2500	V
Machine Model	MM	300	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. THERMAL INFORMATION (Note 3)

Parameter	Symbol	Value	Unit
i di dilietei	Symbol	value	Offic
Junction to Ambient (Note 4)	$\theta_{\sf JA}$	140	°C/W
Junction to Case Top (Note 4)	ΨЈТ	34	°C/W

^{3.} Short-circuits can cause excessive heating and destructive dissipation. Values are typical.

Table 4. RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Limit	Unit
Operating Supply Voltage	V _S	2.7 to 12	V
Specified Operating Range	T _A	-40 to +125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} Input differential voltage is the non–inverting pin with respect to the inverting pin. If V_{ID} > ±1 V, the maximum input current must not exceed ±1 mA; an input series resistor must be used to limit the input current.

^{2.} This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 (JEDEC standard: JESD22-A114)

ESD Machine Model tested per AEC-Q100-003 (JEDEC standard: JESD22-A115)

^{4.} Multilayer board, 1 oz. copper, 400 mm² copper area, both junctions heated equally.

Table 5. ELECTRICAL CHARACTERISTICS AT $V_S = 3.0 \text{ V}$ At $T_A = +25^{\circ}\text{C}$, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	•					
Offset Voltage	Vos			0.6		mV
					8	mV
Offset Voltage Drift	ΔV/ΔΤ			2		μV/°C
Input Bias Current	I _{IB}			55	100	nA
					200	nA
Input Offset Current	los			1	30	nA
					80	nA
Input Common Mode Range	V _{CM}		V _{SS} - 0.2		V _{DD} + 0.2	V
Common Mode Rejection Ratio	CMRR	$V_{SS} + 0.15 < V_{CM} < V_{DD} - 0.15$	50	80		dB
OUTPUT CHARACTERISTICS				-		
Output Voltage High	V _{OH}	$R_L = 600 \Omega$	V _{DD} – 0.2	V _{DD} – 0.08		V
Output Voltage Low	V _{OL}	$R_L = 600 \Omega$		V _{SS} + 0.10	V _{SS} + 0.25	V
Short Circuit Current	I _{SC}		10			mA
NOISE PERFORMANCE						
Voltage Noise Density	e _N	f = 1 kHz, no load		25		nV/√Hz
DYNAMIC PERFORMANCE						
Open Loop Voltage Gain	A _{VOL}	$V_O = 2 \text{ Vpp}, R_L = 600 \Omega$		88		dB
Gain Bandwidth Product	GBWP	$R_L = 2 k\Omega$		3.5		MHz
Gain Margin	A _M	$R_L = 600 \Omega$, $C_L = 100 pF$		8		dB
Phase Margin	ψм	$R_L = 600 \Omega$, $C_L = 100 pF$		56		٥
Slew Rate	SR			1		V/μS
Total Harmonic Distortion + Noise	THD+N	$V_{OUT} = 2 \text{ Vpp, } f_{IN} = 10 \text{ kHz,}$ $A_V = 2, R_L = 10 \text{ k}\Omega$		0.008		%
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	V _S = 2.7 V to 3.3 V	60	105		dB
Quiescent Current	I _{DD}	No load, V _{CM} = V _S /2, per channel		0.7	1.3	mA

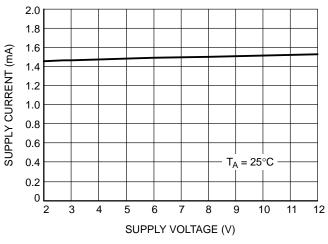
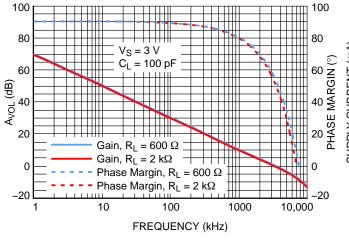

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 6. ELECTRICAL CHARACTERISTICS AT $V_S = 5.0 \text{ V}$ At $T_A = +25^{\circ}\text{C}$, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	•		•	•	•	
Offset Voltage	Vos			0.6		mV
					8	mV
Offset Voltage Drift	ΔV/ΔΤ			2		μV/°C
Input Bias Current	I _{IB}			55	100	nA
					200	nA
Input Offset Current	Ios			1	30	nA
					80	nA
Input Common Mode Range	V _{CM}		V _{SS} - 0.2		V _{DD} +0.2	V
Common Mode Rejection Ratio	CMRR	$V_{SS} + 0.15 < V_{CM} < V_{DD} - 0.15$	50	85		dB
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 600 \Omega$	V _{DD} -0.30	V _{DD} -0.10		V
Output Voltage Low	V _{OL}	$R_L = 600 \Omega$		V _{SS} +0.14	V _{SS} +0.30	V
Short Circuit Current	I _{SC}		10			mA
NOISE PERFORMANCE						
Voltage Noise Density	e _N	f = 1 kHz, no load		25		nV/√Hz
DYNAMIC PERFORMANCE						
Open Loop Voltage Gain	A _{VOL}	$V_O = 2 \text{ Vpp}, R_L = 600 \Omega$		88		dB
Gain Bandwidth Product	GBWP	$R_L = 2 k\Omega$		3.6		MHz
Gain Margin	A _M	$R_L = 600 \Omega, C_L = 100 pF$		9		dB
Phase Margin	ψм	$R_L = 600 \Omega, C_L = 100 pF$		60		0
Slew Rate	SR			1		V/μS
Total Harmonic Distortion + Noise	THD+N	$V_{OUT} = 4 \text{ Vpp, } f_{IN} = 10 \text{ kHz,}$ $A_V = 2, R_L = 10 \text{ k}\Omega$		0.008		%
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 3.3 \text{ V}$	60	105		dB
Quiescent Current	I _{CC}	No load, V _{CM} = V _S /2, per channel		0.75	1.4	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS

40 SHORT CIRCUIT CURRENT (mA) 30 V_S = 3 V, Sinking 20 10 $V_S = 5 V$, Sinking 0 -10 V_S = 3 V, Sourcing -20 V_S = 5 V, Sourcing -30 0.5 2.0 2.5 3.0 3.5 4.0 0 1.0 1.5 4.5 5.0 **OUTPUT VOLTAGE (V)**

Figure 1. Supply Current vs. Supply Voltage

Figure 2. Output Short Circuit Current vs.
Output Voltage

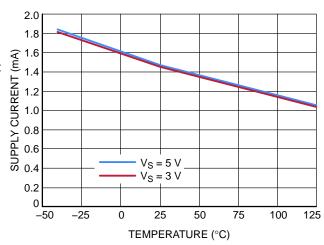
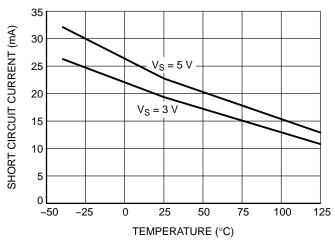



Figure 3. Open Loop Gain and Phase Margin vs. Frequency

Figure 4. Supply Current vs. Temperature

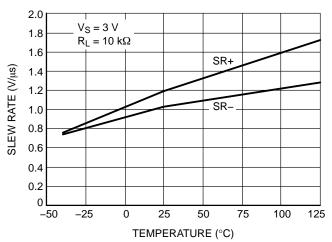


Figure 5. Output Short Circuit Current vs.Temperature

Figure 6. Slew Rate vs. Temperature

TYPICAL CHARACTERISTICS



Figure 7. THD+N vs. Output Voltage

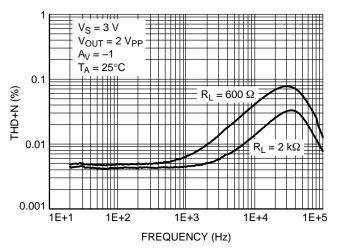


Figure 8. THD+N vs. Frequency

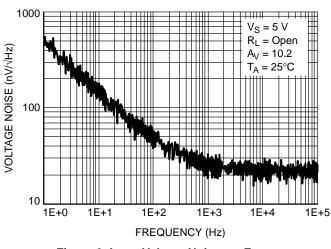


Figure 9. Input Voltage Noise vs. Frequency

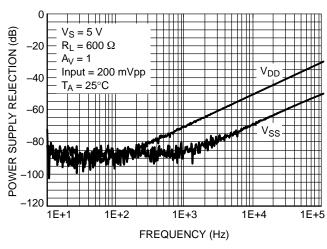


Figure 10. PSRR vs. Frequency

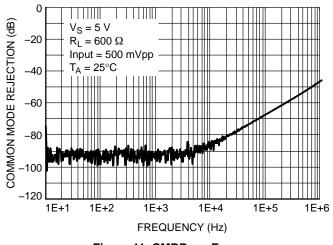


Figure 11. CMRR vs. Frequency

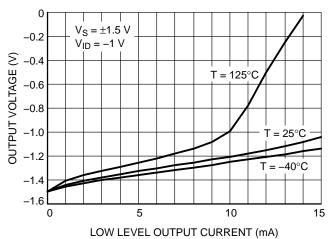


Figure 12. Low Level Output Voltage vs. **Output Current**

TYPICAL CHARACTERISTICS

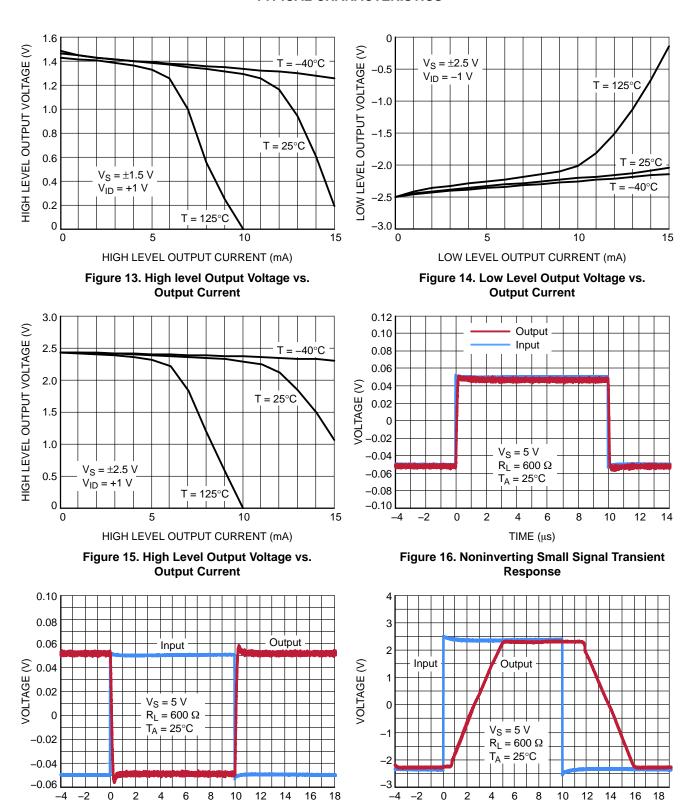


Figure 17. Inverting Small Signal Transient Response

TIME (µs)

Figure 18. Noninverting Large Signal Transient Response

TIME (µs)

TYPICAL CHARACTERISTICS

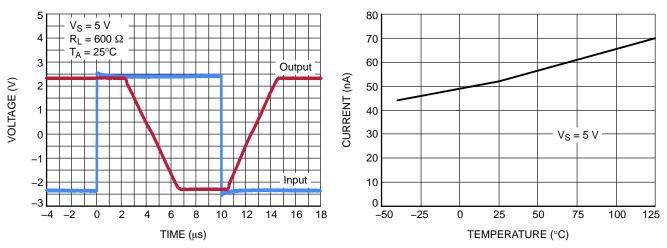


Figure 19. Inverting Large Signal Transient Response

Figure 20. Input Bias Current vs. Temperature

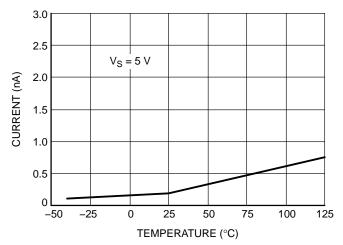
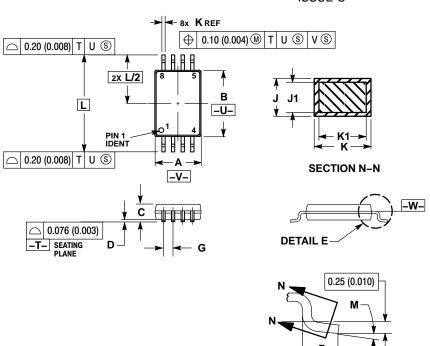



Figure 21. Input Offset Current vs. Temperature

PACKAGE DIMENSIONS

TSSOP-8 CASE 948S **ISSUE C**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- B. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD
- FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	4.30	4.50	0.169	0.177	
С		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65 BSC		0.026 BSC		
J	0.09 0.20		0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252		
М	0°	8°	0°	8°	

ON Semiconductor and in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

DETAIL E

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative